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1. Introduction

After Schnabl’s analytic proof for Sen’s first conjecture [1] in Witten’s cubic open string

field theory (OSFT) [2], there has been remarkable progress in analytic understanding

of OSFT [3]–[19]. In particular, Sen’s third conjecture was proved analytically using the

exactness of identity string state [5]. Analytic solutions for marginal deformations, es-

pecially, rolling tachyon solution, were constructed [12] and extended to superstring field

theory [13]. General formalism for the marginal deformations including the case of singular

operator products was constructed [17]. See also ref. [14] for other approaches in marginal

deformations. And off-shell Veneziano amplitude in OSFT was calculated by employing a

definition of the open string propagator in the Schnabl’s gauge [7, 19].

In this paper, we consider quadratic fluctuations written as Q̃-term in the action of

OSFT numerically, construct an orthogonal basis, and investigate the stability of Schnabl’s

vacuum solution and the structure of tachyon vacuum. Here Q̃ is a new BRST operator

defined at the tachyon vacuum, which is composed of the original BRST operator QB and

tachyon vacuum solution Ψ. In virtue of the exact expression of the vacuum string field

given by Schnabl [1], we construct the Q̃-term for arbitrary fluctuations in a subspace

spanned by wedge state with operator insertions.

Before Schnabl’s breakthrough [1], there were many trials to understand the properties

of Q̃ without exact expression of the vacuum solution [22]–[27]. Most of works in this area

were devoted to the proof of vanishing cohomology of Q̃ [23 – 25, 27, 11] regarding to Sen’s

third conjecture [28, 29]. As one of recent main analytic progresses of OSFT, the vanishing

cohomology of Q̃ was proved by showing that all Q̃-closed states are Q̃-exact. Therefore,

all fluctuation fields around the vacuum are off-shell ones according to the proof. To

study the stability of the Schnabl’s vacuum solution and the tachyon vacuum structure

in terms of potentials for independent fields, we restrict our interest to the spacetime
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independent gauge fixed off-shell fluctuations in Q̃-term neglecting the cubic interactions

for the fluctuations.

In order to describe the physics around the vacuum completely, we have to take into

account the string fluctuations governed by the Q̃-term on the full Hilbert space of OSFT.

However, in numerical work, we have to take a subspace of the full Hilbert space by an

appropriate approximation such as the well-known level truncation approximation [30]–

[33]. In this work, we consider a truncated subspace spanned by basis string states which

are used in Schnabl’s vacuum solution. Since the every basis state satisfies the Schnabl’s

gauge condition, all fluctuations on the basis satisfy the Schnabl’s gauge condition. The

vacuum solution is expressed by an infinite series in terms of wedge states with operator

insertions. In construction of our truncated subspace, Hvac
N , we truncate the basis states

up to wedge state |N + 2〉 with operator insertions.

In section 2, we introduce a truncated Schnabl’s solution on Hvac
N to use the Schnabl’s

solution in numerical work. In N → ∞ limit, the truncated Schnabl’s solution becomes the

exact one. We examine the convergence and accuracy of the truncated Schnabl’s solution

in BPZ inner product by increasing N .

In section 3, we consider spacetime independent arbitrary quadratic fluctuations and

obtain orthogonal basis of Q̃ using the symmetric property of Q̃ on Hvac
N . We investigate the

numerical properties of Q̃ for various situations, discuss the stability of Schnabl’s vacuum

solution, and find quadratic forms of potential for independent fields around the tachyon

vacuum. We conclude in section 4.

2. Truncated Schnabl’s solution

We begin with a brief review of OSFT and an introduction of Schnabl’s analytic vacuum

solution. The action of OSFT [2] has the form

S(Φ) = −
1

g2
o

[

1

2
〈Φ, QBΦ〉 +

1

3
〈Φ, Φ ∗ Φ〉

]

, (2.1)

where go is the open string coupling constant, QB is the BRST operator, ‘∗’ denotes

Witten’s star product, and 〈·, ·〉 is the BPZ inner product. In this definition of BPZ inner

product, we omit the spacetime volume factor. The action (2.1) is invariant under the

gauge transformation δΦ = QBΛ + Φ ∗ Λ − Λ ∗ Φ for any Grassmann-even ghost number

zero state Λ and satisfies the classical field equation,

QBΦ + Φ ∗ Φ = 0. (2.2)

Schnabl’s analytic vacuum solution of the eq. (2.2) was represented as [1]

Ψ ≡ lim
N→∞

[

N
∑

n=0

ψ
′

n − ψN

]

, (2.3)
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where ψn and ψ
′

n ≡ ∂ψn

∂n
are the wedge state |n + 2〉 [20, 21] with operator insertions, given

by

ψ0 =
2

π
c1|0〉,

ψn =
2

π
c1|0〉 ∗ |n〉 ∗ BL

1 c1|0〉, (n ≥ 1)

ψ
′

0 = KL
1 c1|0〉 + BL

1 c0c1|0〉,

ψ
′

n = c1|0〉 ∗ KL
1 |n〉 ∗ BL

1 c1|0〉, (n ≥ 1). (2.4)

Here we use the following operator representations on upper half plane(UHP),

BL
1 =

∫

CL

dξ

2πi
(1 + ξ2)b(ξ),

KL
1 =

∫

CL

dξ

2πi
(1 + ξ2)T (ξ), (2.5)

where b(ξ) is the b ghost and the contour CL runs counterclockwise along the unit circle

with Re z < 0. In obtaining the solution Ψ, Schnabl used clever coordinate z = tan−1 ξ

and gauge choice

B0Ψ = 0, (2.6)

where B0 =
∮

dξ
2πi

(1 + ξ2) tan−1 ξ b(ξ).

We can describe the physics around the tachyon vacuum Ψ by shifting the string field

Φ = Ψ + Ψ̃. Then the action in terms of string field Ψ̃ is given by

S̃(Ψ̃) ≡ S(Ψ + Ψ̃) − S(Ψ) = −
1

2
〈Ψ̃, Q̃Ψ̃〉 −

1

3
〈Ψ̃, Ψ̃ ∗ Ψ̃〉, (2.7)

where we set go = 1 for simplicity. The new BRST operator Q̃ acts on a string field φ of

ghost number n through

Q̃φ = QBφ + Ψ ∗ φ − (−1)nφ ∗ Ψ. (2.8)

It is straightforward to check the nilpotent property of Q̃ using the properties of the star

products and the equation of motion for Ψ, QBΨ + Ψ ∗ Ψ = 0. The new action for the

string field Ψ̃ has the same form as the original action (2.1) when QB and Ψ are replaced

by Q̃ and Ψ̃ respectively. So we can easily find the form of the gauge transformation for

the action, δΨ̃ = Q̃Λ̃ + Ψ̃ ∗ Λ̃ − Λ̃ ∗ Ψ̃, with any Grassmann-even ghost number zero state

Λ̃.

Our purpose in this paper is to investigate the physical properties of the new action

S̃(Ψ̃) around the tachyon vacuum neglecting the cubic term in eq. (2.7) numerically. To

accomplish this purpose, we have to use the Schnabl’s solution according to the definition

of Q̃ in eq. (2.8). Most difficulties in numerical computations by using Schnabl’s solution

come from the infinite series expression of it given in eq. (2.3). To use the Schnabl’s

solution in numerical work we have to truncate the infinite series somehow. As a truncation
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N 0 2 4 6 8 10

f(N) −0.11289 −0.73227 −0.89030 −0.94163 −0.96400 −0.97564

N 20 40 60 80 100 200

f(N) −0.99319 −0.99820 −0.99919 −0.99954 −0.99970 −0.99992

Table 1: Values of f(N) for various truncation numbers.

approximation similar to the well-known level truncation approximation in open string field

theory [30 – 33], we consider the following wedge state truncation for the solution (2.3),

ΨN =

N
∑

n=0

ψ
′

n − ψN , (2.9)

where N is a finite number.1 We include the string states up to wedge state |N + 2〉 in

the truncated Schnabl’s solution (2.9). In this representation, the Schnabl’s solution Ψ

corresponds to Ψ∞.

To use the truncated Schnabl’s solution instead of the tachyon vacuum solution Ψ

given in eq. (2.3) in numerical computations, we have to check the properties of ΨN in

BPZ inner products. We insert Φ = ΨN into the action (2.1), and increase N to figure out

the properties of ΨN in BPZ inner products. We compare this result with the well-known

explicit result by Schnabl [1]. It was proved that Ψ in eq. (2.3) reproduces the exact tension

(= 1/2π2 in α′ = 1 unit) of D25-brane expected by Sen’s first conjecture, i.e.,

S(Ψ) = −
1

2
〈Ψ, QBΨ〉 −

1

3
〈Ψ, Ψ ∗ Ψ〉 =

1

2π2
, (2.10)

where

〈Ψ, QBΨ〉 = −
3

π2
, 〈Ψ, Ψ ∗ Ψ〉 =

3

π2
. (2.11)

In table 1, we give the values of the normalized tachyon potential [29], f(N), defined

as

f(N) ≡ −2π2S(ΨN ) (2.12)

for various truncation numbers. From this numerical result, we see that the quantities f(N)

converge to the exact value f(∞) = −1 with high accuracy as we increase N . In the usual

level truncation approximation in OSFT, the normalized tachyon potential approaches to

−1 as L → ∞ non-monotonically [34, 33]. But in this wedge state truncation, f(N)

is a monotonic function with respective to N . In figure1, we plot the behavior of f(N).

Therefore, we can safely replace the infinite series of Schnabl’s solution Ψ with the truncated

Schnabl’s solution ΨN for sufficiently large number of N in the numerical computations of

the BPZ inner products which contain the Schnabl’s solution.

1In the level truncated OSFT [30]–[33], the open string fields are restricted to modes with L0 eigenvalues

which are smaller than the maximum level L. Thus the resulting solutions for various numbers of L have

different forms. But in our case we truncate the known exact solution without change of coefficients for

basis states.
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Figure 1: Graph of f(N). The points represent f(6), f(8), · · · f(50) from the left.

3. Quadratic fluctuations around the tachyon vacuum

Small fluctuations of string field Ψ̃ around the tachyon vacuum are governed by quadratic

term in the action (2.7),

S̃0(Ψ̃) = −
1

2
〈Ψ̃, Q̃Ψ̃〉. (3.1)

This action is composed of innumerable fields which are related each other in general. In

this section, we investigate the properties of the spacetime independent fluctuations of Ψ̃.

To do this we calculate the quantity 〈Ψ̃, Q̃Ψ̃〉 numerically. In this calculation, we restrict

our interests to arbitrary gauge fixed fluctuations with ghost number 1 on the space spanned

by wedge states with some operator insertions, ψ
′

m, (m = 0, 1, 2, · · ·), used in the expression

of Schnabl’s solution (2.3). We construct the orthogonal basis of Q̃, which allows to define

independent fields and obtain the quadratic potentials of the fields.

3.1 Orthogonal basis of Ψ̃

In principle we have to consider the fluctuation field Ψ̃ on the full Hilbert space around the

tachyon vacuum to study the physical properties of Ψ̃ given in the action (3.1). However,

the Hilbert space around the vacuum is not well-known up to now. In our numerical work

we restrict our interests to the fluctuation field Ψ̃ on the subspace spanned by basis states,

Hvac
N ≡ span{ψ

′

n, 0 ≤ n ≤ N} (3.2)

with large but finite number of N .

Actually we can express the ordinary piece
∑∞

n=0 ψ
′

n on the subspace Hvac
∞ without the

phantom piece −ψ∞ in Schnabl’s solution (2.3). The ordinary piece alone contributes to

the vacuum energy about 50% and the remaining contributions come from the interactions
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between the ordinary piece and phantom one and the phantom piece alone. So, the contri-

bution of the phantom piece to the vacuum energy is nontrivial [1, 3]. If we parametrize

the phantom piece like as αψ∞, we can easily see that the vacuum energy has the minimum

value for the case α = −1 which is the exact coefficient of ψ∞ in the phantom piece. Thus

the energy contributions of the fluctuations along the direction of the phantom piece is

positive always. However, the fluctuations which are expressed by the basis on Hvac
∞ and

ψ∞ simultaneously have nontrivial difficulties in the investigation of energy contributions

by using our method which will be explained later. In this reason, we restrict our interests

in the fluctuations on Hvac
N only. We believe that this subspace is very important space in

the tachyon condensation as we explained.

We express Ψ̃ on the truncated subspace spanned by (N + 1)-basis states (3.2) as

Ψ̃N =
N

∑

n=0

cnψ
′

n, (3.3)

where cn is an arbitrary small real number. Since each basis state satisfies

B0 ψ
′

n = 0, (n ≥ 0), (3.4)

the fluctuation Ψ̃N in eq. (3.3) satisfies the gauge choice

B0Ψ̃N = 0. (3.5)

In other words, we consider the gauge fixed fluctuations around the tachyon vacuum.

Inserting the eq. (3.3) into the quantity 〈Ψ̃, Q̃Ψ̃〉 in eq. (3.1), we obtain

〈Ψ̃, Q̃Ψ̃〉N =
N

∑

m=0

N
∑

n=0

cmcn(Q̃N )mn, (3.6)

where

(Q̃N )mn ≡ 〈ψ
′

m, Q̃Nψ
′

n〉

= 〈ψ
′

m, QBψ
′

n〉 + 〈ψ
′

m, ΨN ∗ ψ
′

n〉 + 〈ψ
′

m, ψ
′

n ∗ ΨN 〉

=
∂

∂m

∂

∂n
f(m,n) + 2

N
∑

k=0

∂

∂m

∂

∂k

∂

∂n
h(m,k, n) − 2

∂

∂m

∂

∂n
h(m,N,n) (3.7)

with ΨN given in eq. (2.9). Here f(m,n) and h(m,k, n) are the explicitly known formulae [1,

3],

f(m,n) ≡ 〈ψn, QBψm〉

=
1

π2

(

1 + cos
(m − n)π

m + n + 2

)(

−1 +
m + n + 2

π
sin

2π

m + n + 2

)

+ 2 sin2 π

m + n + 2

[

−
m + n + 1

π2
+

mn

π2
cos

(m − n)π

m + n + 2

+
(m + n + 2)(m − n)

2π3
sin

π (m − n)

m + n + 2

]

, (3.8)
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h(m,k, n) ≡ 〈ψn, ψm ∗ ψk〉

=
1

2

(

2

π

)7

(m + n + k + 3)2 sin2

(

π

m + n + k + 3

)

× sin

(

(n + 1)π

m + n + k + 3

)

sin

(

(m + 1)π

m + n + k + 3

)

sin

(

(k + 1)π

m + n + k + 3

)

. (3.9)

In the last step of eq. (3.7) we used the symmetries among indices m, k, and n in h(m,k, n).

which come from the twist symmetry of OSFT. Using the properties of the BPZ inner

product and BRST operator QB, we can see that there is a symmetry between m and n

in f(m,n) also. So (Q̃N )nm is a matrix element of the real symmetric (N + 1) × (N + 1)

matrix Q̃N .

Since Q̃N is a finite dimensional real symmetric matrix, we can diagonalize Q̃N ac-

cording to the following finite dimensional spectral theorem:

To every finite dimensional real symmetric matrix A there exists a real orthogonal

matrix Ũ such that D = ŨAŨT is a diagonal matrix.

Here ŨT = Ũ−1 is the transpose matrix of Ũ . According to this theorem, we can

diagonalize the matrix Q̃N by an orthogonal matrix U as

Q̃N = UT Q̃
(d)
N U, (3.10)

where Q̃
(d)
N is a diagonalized matrix. Substituting the relation (3.10) into (3.6), we obtain

〈Ψ̃, Q̃Ψ̃〉N =

N
∑

m=0

N
∑

n=0

cm(UT Q̃
(d)
N U)mncn

=
N

∑

m=0

λ̄mc̄2
m, (3.11)

where the values λ̄m are diagonal components of Q̃
(d)
N , i.e., eigenvalues of Q̃N , and we define

c̄m =

N
∑

n=0

Umncn. (3.12)

Since cm and all matrix elements Umn are real, the arbitrary coefficients c̄m are also real.

By comparing (3.6) with (3.11) and using the property of orthogonal matrix, UT = U−1,

we obtain

〈ψ̄m, Q̃ψ̄n〉N = λ̄mδmn, (3.13)

where the orthogonal basis ψ̄m is defined as

ψ̄m =

N
∑

n=0

Umnψ
′

n. (3.14)

In the orthogonal basis (3.14), the truncated Schnabl’s solution (2.9) and the fluctuation

string field (3.3) are written respectively as,

ΨN =
N

∑

m=0

N
∑

n=0

Unmψ̄n − ψN , Ψ̃ =
N

∑

m

c̄mψ̄m. (3.15)

– 7 –
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3.2 Numerical results

To determine the diagonal components λ̄m and the orthogonal matrix U for a given trun-

cation number N , we calculate the matrix elements of Q̃N given in eq. (3.7) with the

assistance of the MATHEMATICA program. During all processes of the numerical com-

putations, we adjusted the number of significant digits by manipulating options of the

program to increase numerical precisions. We calculate the matrix components of Q̃N up

to N = 200. In principle, we can obtain numerical results for the higher number of N

than N = 200. As we will see in the numerical data, however, we can capture most of

characteristic features of Q̃N by using the data up to N = 200 sufficiently.

In our setup, we truncate the infinite dimensional matrix representation of Q̃ to a

finite dimensional (N + 1) × (N + 1) matrix Q̃N with truncated Schnabl’s solution (2.9)

for numerical work. Since the vacuum energy calculated from the truncated Schnabl’s

solution ΨN converges to the exact one by raising N without any singularities [1, 3], the

convergence of a certain quantity can be a criterion whether it is meaningful or not.

From the numerical results of Q̃N , we determine the eigenvalues λ̄m and the orthogonal

matrix U for a given N . In table 2, we give eigenvalues of Q̃N for several truncation numbers

of N .2 For positive eigenvalues, all eigenvalues, λ̄0, λ̄1, λ̄2, · · ·, seem to converge rapidly,

i.e., λ̄m for a given m has a convergent series by raising N . For example, we explicitly show

the convergent properties of λ̄m for several largest eigenvalues in table 3. We can also see

the convergency of λ̄m for a given m graphically in figure 2.

Similarly to the eigenvalues of Q̃N , the expansion coefficients of the orthogonal basis

ψ̄m with positive eigenvalues in eq. (3.14) have convergent series as we increase N . For

example, we give the lowest orthogonal state ψ̄0 which gives the largest eigenvalues λ̄0 for

various truncation numbers of N ,

N = 0 : ψ̄0 = ψ
′

0,

N = 1 : ψ̄0 = 0.8123ψ
′

0 + 0.5832ψ
′

1,

N = 2 : ψ̄0 = 0.9309ψ
′

0 + 0.2798ψ
′

1 − 0.2349ψ
′

2,

N = 3 : ψ̄0 = 0.8753ψ
′

0 + 0.1228ψ
′

1 − 0.3239ψ
′

2 − 0.3374ψ
′

3,

N = 4 : ψ̄0 = 0.8521ψ
′

0 + 0.1912ψ
′

1 − 0.2686ψ
′

2 − 0.3188ψ
′

3 − 0.2521ψ
′

4

N = 5 : ψ̄0 = 0.8384ψ
′

0 + 0.2503ψ
′

1 − 0.2196ψ
′

2 − 0.2984ψ
′

3 − 0.2514ψ
′

4 − 0.1844ψ
′

5.(3.16)

For the higher numbers of N than N = 5, we found the similar convergent properties in

the expression of ψ̄0. We also checked that the other orthogonal states, ψ̄n, (n ≥ 1), have

the convergent series in their expansion coefficients by raising N . Using the expression of

the orthogonal basis for a given N , we constructed the truncated Schnabl’s solution (3.15).

We calculated the normalized tachyon potential f(N) in eq. (2.12) and found the same

results in table 1.

As we see in table 2, the smallest eigenvalue for a given truncation number is negative.

The first negative one appears from N = 9 with magnitude 10−8. The second one appear

2λ̄0, λ̄1, λ̄2, · · · is a descending series for the positive eigenvalues of Q̃N . The negative eigenvalue is

named as λ̄−.

– 8 –



J
H
E
P
1
2
(
2
0
0
7
)
0
3
8

N λ̄n

0 0.31496

5 0.41439, 0.27719, 0.072777 0.018645, 0.00087062, 0.000027315

10 0.40674, 0.29151, 0.085571, 0.054505, 0.0090014, 0.0014360,

0.000089022, 5.9890×10−6 , 9.6021×10−8, 1.1696×10−9, −3.8026 × 10−10

0.39960, 0.29724, 0.090905, 0.064312, 0.017602, 0.0046710,

15 0.00055827, 0.000073178, 4.3180×10−6, 3.2883×10−7, 3.4230×10−9,

6.7699×10−11, 5.7708×10−13 , 7.2692×10−15, 2.9800×10−17 , −2.9633 × 10−9

0.39775, 0.29756, 0.096908, 0.064655, 0.022717, 0.0083524,

20 0.0013873, 0.00025064, 0.000024051, 2.8430×10−6 , 1.2781×10−7,

8.1196×10−9 , 8.3458×10−11 , 3.3754×10−12, 7.0465×10−14 , 1.7739×10−15,

2.5832×10−17, 3.3640×10−19 , 2.3055×10−21, 8.8003×10−24 , −3.3857 × 10−8

0.39739, 0.29702, 0.099841, 0.065190, 0.024882, 0.011712,

0.0023989, 0.00053188, 0.000067479, 0.000010217, 7.6109×10−7,

25 8.0343×10−8, 1.5590×10−9, 9.2397×10−11 , 2.8421×10−12, 1.3550×10−13 ,

4.0610×10−15 , 1.3445×10−16 , 3.0310×10−18 , 6.6446×10−20 , 9.9971×10−22 ,

1.3095×10−23, 1.0964×10−25 , 6.5095×10−28, 1.6845×10−30 , −5.5178 × 10−9

Table 2: Eigenvalues of Q̃N for various N .

from N = 98. In our numerical range (up to N = 200), there are only two negative

eigenvalues. The negative eigenvalue λ̄− decreases with oscillating behaviors for small N

(up to about N = 50), and decreases very slowly for large N . λ̄− almost stays around 10−8

in the range of our numerical experiments. The properties of the second one are similar to

those of the first one.

The negative mode corresponds to the smallest eigenvalues for given N . Here we

are dealing with approximation of infinite dimensional operator Q̃ with a sequence of finite

dimensional one, and the approximation works in such a way that it matches approximately

with the biggest eigenvalues and corresponding eigenvectors. To make sure this fact we

investigate the validity of the negative eigenmode concretely. In order to figure out the

negative mode for Q̃ in terms of the behaviors of eigenvalue, we need numerical data for very

large number of N . However, it is a difficult problem because of computation time in the

computer program. Instead of the eigenvalue, we investigated the behavior of coefficients

in the negative eigenmode ψ̄− =
∑N

n=0 U−nψ
′

n given in eq. (3.14). In the numerical work

up to N = 200, we found that 6 coefficients for lowest states, U−i, (i = 0, · · · , 5), converge.

Several convergent coefficients are given in table 4. For the coefficients for the higher states,

we could not find convergent behaviors since they become irregular by raising N . We fitted

the convergent coefficients and take the limit N goes to infinity. We found the quantity

〈ψ̄−, Q̃, ψ̄−〉 is positive for the resulting coefficients in N → ∞ limit. This result implies

that the negativity of 〈ψ̄−, Q̃ ψ̄−〉 comes from the contribution of the higher states in ψ̄−,

which have non-convergent coefficients. From this result, we can see that eigenvector ψ̄−
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N=10 N=20 N=30 N=40 N=50

λ̄0 0.4067444 0.3977491 0.3973819 0.3974832 0.3975486

λ̄1 0.2915061 0.2975642 0.2965582 0.2960965 0.2959405

λ̄2 0.08557135 0.09690845 0.1009738 0.1013045 0.1010974

λ̄3 0.05450536 0.06465539 0.06625414 0.06825249 0.06937157

λ̄4 0.009001405 0.02271652 0.02550463 0.02572638 0.02654655

λ̄5 0.001435974 0.008352415 0.01446823 0.01789735 0.01898159

N=60 N=70 N=80 N=90 N=100

λ̄0 0.3975807 0.3975964 0.3976044 0.3976086 0.3976110

λ̄1 0.2958885 0.2958715 0.2958665 0.2958658 0.2958664

λ̄2 0.1009304 0.1008443 0.1008076 0.1007954 0.1007940

λ̄3 0.06986604 0.07005325 0.07010889 0.07011381 0.07010217

λ̄4 0.02762730 0.02848060 0.02905543 0.02941796 0.02963724

λ̄5 0.01910793 0.01913351 0.01924661 0.01943154 0.01964400

Table 3: Several biggest eigenvalues, λ̄0, λ̄1, · · · λ̄5, for N = 10, 20, · · · 100.

and its eigenvalue are not meaningful in our approximation.3

Since we are considering spacetime independent fluctuations around the vacuum, the

energy for the fluctuations is identified as

∆E =
1

2
〈Ψ̃, Q̃Ψ̃〉 =

1

2

N
∑

m=0

λ̄mc̄2
m = −S̃0. (3.17)

Here ∆E corresponds to the energy difference from the vacuum energy. In our numerical

work, all fluctuations which have convergent eigenvalues and eigenvectors with convergent

coefficients have positive contributions to ∆E. Therefore, our numerical result supports

that the Schnabl’s vacuum solution is a minimum energy solution and stable for off-shell

fluctuations also.

3.3 Potentials for various fields around the tachyon vacuum

In the previous subsection, we calculated the quantity 〈Ψ̃, Q̃Ψ̃〉 with spacetime independent

gauge fixed fluctuation Ψ̃ on Hvac
N . And we obtained the result (3.11) numerically. Inserting

the eq. (3.11) into the action (3.1) which is defined around the tachyon vacuum, we obtain

S̃0(c̄m) = −
1

2

N
∑

m=0

λ̄mc̄2
m. (3.18)

In this expression, S̃0 is defined to be the action value divided by the spacetime volume

3We are indebted to Martin Schnabl on this point.
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-20

log[��n℄

n N = 10N = 20N = 30N = 40N = 50N = 60N = 70N = 80
Figure 2: Graphs of log λ̄n for n = 2, 4, 6, · · · 50 on the truncated subspace Hvac

N
, (N =

10, 20, · · · 80).

N=100 N=120 N=140 N=160

U−0 0.0021283 0.0023351 0.0024864 0.0025841

U−1 −0.0085477 −0.0092470 −0.0097477 −0.010049

U−2 0.047870 0.051303 0.053727 0.055103

U−3 −0.18174 −0.19797 −0.19904 −0.20257

Table 4: Coefficients for the several lowest states in the negative eigenmode

factor according to the convention of BPZ inner product in this paper. Since we are

considering spacetime independent fluctuations, S̃0 can be written as the potential density

around the tachyon vacuum,

V (φ̄m) = −S̃(φ̄m) =
1

2

N
∑

m=0

λ̄mφ̄2
m, (3.19)

where we replace the arbitrary coefficients c̄m with spacetime independent off-shell fields

φ̄m. For several largest eigenvalues, for instance, the potentials for independent fields are

given by

V (φ̄m) = 0.39761 φ̄2
0 + 0.29587 φ̄2

1 + 0.10082 φ̄2
2 + 0.070038 φ̄2

3 + 0.029882 φ̄2
4 + · · · ,(3.20)

where we used the data for N = 200 case. The explicit numbers of λ̄m for several truncation

numbers N were given in table 2. The eigenvalues λ̄m with fixed N exponentially decrease

with small oscillating behaviors as we increase m. For example, in the case N = 200, λ̄m

has the following fitting curve,

λ̄m ∼ e−0.6102 m. (3.21)
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4. Conclusion

We have investigated the behaviors of the quadratic fluctuations around the tachyon vac-

uum on the truncated subspace Hvac
N numerically. We showed that the truncated form

of Schnabl’s solution Ψ̃N is well-behaved on Hvac
N and has nice convergence property by

raising N and high accuracy in BPZ inner product for large N . The physics around the

vacuum is governed by S̃0(Ψ̃) given in eq. (3.1). In this paper we restricted our interest to

the spacetime independent quadratic fluctuation Ψ̃. To calculate S̃0(Ψ̃) on Hvac
N , we con-

structed the orthogonal string state ψ̄m, (m = 0, 1, 2, · · ·N), using the symmetric structure

of Q̃ and obtained corresponding eigenvalues λ̄m.

The eigenvalues λ̄m have nice convergence properties by raising N also for small m.

As we increase the truncation number N , the number of meaningful eigenvalues become

large. In our numerical results, most of eigenvalues are positive but very small number of

negative eigenvalues appear. The first one with magnitude ∼ 10−8 appears from N = 9

and the magnitude of it very slowly grows according to the truncation number N . The

second one appear from N = 98 and has the same properties with the first one. As we

argued in subsection 3.2, the negative modes are numerical artifacts of our setting. Thus

all spacetime independent fluctuations around the vacuum have positive contribution to

energy in the range of our numerical work. This result supports that the Schnabl’s vacuum

solution is stable and represents minimum energy solution for off-shell fluctuations also.

Since we have taken into account the orthogonal basis states, the corresponding fields

for the states have no interactions with other fields around the vacuum. Then the action

S̃0(Ψ̃) on Hvac
N with spacetime independent fluctuation Ψ̃ corresponds to sum of quadratic

forms of potentials with coefficients λ̄m for the fields as given in eq. (3.19). In canonical

kinetic term with second order derivatives in field theory, there exist massive physical

excitations for harmonic oscillator potential and λ̄m corresponds to mass2 of the field φ̄m.

However, these phenomena do not happen since the absence of physical state including

tachyon state at the vacuum was proved analytically [5]. Thus the shapes of quadratic

potentials in our numerical results represent that the kinetic term at the tachyon vacuum

has different form from the canonical second order differential operator and does not allow

the physical excitations.

Extension of our work to the fluctuations with nonvanishing momentum will be helpful

to figure out the role of kinetic term around the vacuum and to understand universal

mechanism of vanishing of physical excitations by comparing with other theories, such as

boundary string field theory, p-adic string theory, and DBI-type effective field theory, etc.
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